Экзотические питомцы 

Реакция нейтрализации, сущность метода и практическое применение. Реакция нейтрализации К реакции нейтрализации относится реакция

Реакция между кислотой и основанием, в результате которой образуется соль и вода, называется реакцией нейтрализации.

Мы изучили реакции взаимодействия кислот с металлами и окислами металлов. При этих реакциях образуется соль соответствующего металла. Основания также содержат металлы. Можно предположить, что кислоты будут взаимодействовать с основаниями тоже с образованием солей. Прильем к раствору гидроокиси натрия NaOH раствор соляной кислоты HCl.

Раствор остается бесцветным и прозрачным, но на ощупь можно установить, что при этом выделяется теплота. Выделение теплоты показывает, что между щелочью и кислотой произошла химическая реакция .

Чтобы выяснить сущность этой реакции, проделаем такой опыт. В раствор щелочи поместим бумажку, окрашенную фиолетовым лакмусом. Она, конечно, посинеет. Теперь из бюретки начнем приливать к раствору щелочи малыми порциями раствор кислоты, пока окраска лакмуса опять изменится из синей в фиолетовую. Если лакмус из синего стал фиолетовым, то это означает, что в растворе не стало щелочи. Не стало в растворе и кислоты, так как в ее присутствии лакмус должен был бы окраситься в красный цвет. Раствор сделался нейтральным. Выпарив раствор, мы получили соль – хлористый натрий NaCl.

Образование хлористого натрия при взаимодействии гидроокиси натрия с соляной кислотой выражается уравнением:

NaOH + HCl = NaCl + H 2 O + Q

Сущность этой реакции заключается в том, что атомы натрия и водорода обмениваются местами. В результате водородный атом кислоты соединяется с гидроксильной группой щелочи в молекулу воды, а атом металла натрия соединяется с остатком кислоты – Cl, образуя молекулу соли. Эта реакция относится к знакомому нам типу реакций обмена .

Вступают ли в реакции с кислотами нерастворимые основания ? Насыплем в стакан голубую гидроокись меди. Прибавим воды. Гидроокись меди не растворится. Теперь прильем к ней раствор азотной кислоты. Гидроокись меди растворится и получится прозрачный раствор азотнокислой меди голубого цвета. Реакция выражается уравнением:

Cu(OH) 2 + 2HNO 3 = Cu(NO 3) 2 + 2H 2 O

Нерастворимые в воде основания, как и щелочи, взаимодействуют с кислотами с образованием соли и воды.

С помощью реакции нейтрализации определяют опытным путем нерастворимые кислоты и основания. Гидраты окислов, вступающие в реакцию нейтрализации со щелочами, относятся к кислотам. Убедившись на опыте, что данный гидрат окисла нейтрализуется щелочами, мы пишем его формулу, как формулу кислоты, записывая химический знак водорода на первое место: HNO3, H 2 SO 4 .

Кислоты друг с другом с образованием солей не взаимодействуют.

Гидраты окислов, вступающие з реакцию нейтрализации с m лотами, относятся к основаниям. Убедившись на опыте, что данный гидрат окисла нейтрализуется кислотами, мы пишем его формулу в виде Ме(ОН) n , т. е. подчеркиваем присутствие в нем гидроксильных групп.

Основания друг с другом с образованием солей не взаимодействуют.

Взаимодействие кислоты и основания с образованием соли и воды называется реакцией нейтрализации. Обычно подобные реакции протекают с выделением тепла.

Общее описание

Суть нейтрализации состоит в том, что кислота и основание, обмениваясь активными частями, нейтрализуют друг друга. В результате образуется новое вещество (соль) и нейтральная среда (вода).

Простым и наглядным примером реакции нейтрализации является взаимодействие соляной кислоты и гидроксида натрия:

HCl + NaOH → NaCl + H 2 O.

Если опустить лакмусовую бумажку в раствор соляной кислоты и гидроксида натрия, то она окрасится в фиолетовый цвет, т.е. покажет нейтральную реакцию (красный - кислая среда, синий - щелочная среда).

Раствор двух активных соединений превратился в воду за счёт обмена натрием и хлором, поэтому ионное уравнение данной реакции выглядит следующим образом:

H + + OH - → H 2 O.

После нагревания получившегося раствора вода испарится, а в пробирке останется поваренная соль - NaCl.

Рис. 1. Образование соли после выпаривания.

В подобных реакциях вода - обязательный продукт.

Примеры

Реакция нейтрализации может происходить между сильными и слабыми кислотами и щелочами. Рассмотрим два типа реакций:


Реакция нейтрализации считается одной из важнейших для кислот и оснований. Именно это взаимодействие предполагает образование воды в качестве одного из продуктов реакции.

Механизм

Проанализируем уравнение реакции нейтрализации на примере взаимодействия гидроксида натрия с соляной (хлороводородной) кислотой. Катионы водорода, образующиеся в результате диссоциации кислоты, связываются с гидроксид-ионами, которые образуются при распаде щелочи (гидроксида натрия). В итоге между ними протекает реакция нейтрализации

H+ + OH- → H 2 O

Характеристика химического эквивалента

Кислотно-основное титрование взаимосвязано с нейтрализацией. Что такое титрование? Это способ вычисления имеющейся массы основания либо кислоты. Он предполагает измерение количества щелочи либо кислоты с известной концентрацией, которое необходимо брать для полной нейтрализации второго реагента. Любая реакция нейтрализации предполагает применение такого термина как «химический эквивалент».

Для щелочи это то количество основания, которое в случае полной нейтрализации образует один моль гидроксид ионов. Для кислоты химический эквивалент определяется количеством, выделяемым при нейтрализации 1 моль катионов водорода.

Реакция нейтрализации протекает в полном объеме в том случае, если в исходной смеси находится равное количество химических эквивалентов основания и кислоты.

Грамм-эквивалентом считается масса основания (кислоты) в граммах, которые способны образовывать один моль гидроксид-ионов (катионов водорода). Для одноосновной кислоты (азотной, соляной), которые при распаде молекулы на ионы высвобождают по одному катиону водорода, химический эквивалент аналогичен количеству вещества, а 1 грамм-эквивалент соответствует молекулярной массе вещества. Для двухосновной серной кислоты, образующей в процессе электролитической диссоциации два катиона водорода, один моль соответствует двум эквивалентам. Поэтому в кислотно-основном взаимодействии ее грамм-эквивалент равен половине относительной молекулярной массы. Для трехосновной фосфорной кислоты при полной диссоциации, образующей три катиона водорода, один грамм-эквивалент будет равен трети относительной молекулярной массы.

Для оснований принцип определения аналогичен: грамм-эквивалент зависит от валентности металла. Так, для щелочных металлов: натрия, лития, калия - искомая величина совпадает с относительной молекулярной массой. В случае расчета грамм-эквивалента гидроксида кальция, данная величина будет равна половине относительной молекулярной массы гашеной извести.

Пояснение механизма

Попробуем понять, что представляет собой реакция нейтрализации. Примеры такого взаимодействия можно взять разные, остановимся на нейтрализации азотной кислоты гидроксидом бария. Попробуем определить массу кислоты, в которой нуждается реакция нейтрализации. Примеры расчетов приведем ниже. Относительная молекулярная масса азотной кислоты составляет 63, а гидроксида бария 86. Определяем число грамм-эквивалентов основания, содержащегося в 100 граммах. 100 г делим на 86 г/экв и получаем 1 эквивалент Ba(OH) 2 . Если рассматривать данную проблему через химическое уравнение, то можно составить взаимодействие следующим образом:

2HNO 3 + Ba(OH) 2 → Ba(NO 3) 2 + 2H 2 O

По уравнению отчетливо видна вся химия. Реакция нейтрализации здесь протекает полностью в том случае, когда два моль кислоты вступают в реакцию с одним моль основания.

Особенности нормальной концентрации

Ведя речь о нейтрализации, часто используют нормальную концентрацию основания или щелочи. Что представляет собой данная величина? Нормальность раствора демонстрирует то количество эквивалентов искомого вещества, которое существует в одном литре его раствора. С ее помощью проводят количественные вычисления в аналитической химии.

Например, если нужно определить нормальность и молярность 0,5 литра раствора, полученного после растворения 4 граммов гидроксида натрия в воде, сначала необходимо определить относительную молекулярную массу гидроксида натрия. Она составит 40, молярная масса будет 40 г/моль. Далее определяем количественное содержание в 4 граммах вещества, для этого делим массу на молярную, то есть, 4 г:40 г/моль, получаем 0,1 моль. Поскольку молярная концентрация определяется отношением количества моль вещества к общему объему раствора, можно вычислить молярность щелочи. Для этого 0,1 моль делим на 0,5 литра, в итоге получаем 0,2 моль/л, то есть, 0,2 М щелочи. Так как основание является однокислотным, его молярность численно равна нормальности, то есть соответствует 0,2 н.

Заключение

В неорганической и органической химии реакция нейтрализации, протекающая между кислотой и основанием, имеет особое значение. Благодаря полной нейтрализации исходных компонентов происходит реакция ионного обмена, полноту которой можно проверить с помощью индикаторов на кислую и щелочную среду.

Нейтрализация – химическая реакция, происходящая между двумя составами, имеющими свойства кислоты и основания. В результате их взаимодействия происходит потеря свойств обоих веществ, что приводит к выделению соли и воды.

Сфера применения нейтрализации

Вычисления по этой реакции особенно часто используются:

  • в агрохимических лабораториях;
  • в химическом производстве;
  • при обработке отходов.

Метод нейтрализации применяется в клинических лабораториях для определения буферной емкости плазмы крови, кислотности желудочного сока. Активно используется и в фармакологии, когда нужно провести количественный анализ неорганических и органических кислот. Проводить этот процесс можно по всем правильно составленным уравнениям.

Внешние проявления нейтрализации

Процесс нейтрализации кислоты можно наблюдать, если вначале к раствору добавить несколько капель индикатора, который позволит изменить окраску раствора. Когда к этой смеси добавляется щелочь, то окраска полностью исчезает. Но стоит учитывать, что индикаторы меняют свою окраску не строго в эквивалентной точке, а с отклонением. Поэтому даже при правильном выборе индикатора допускается погрешность. Если же он был выбран неправильно, то все результаты оказываются искаженными.

В условиях школьной программы для этого применяют лимонную кислоту и нашатырный спирт. В качестве примера можно рассмотреть процесс реакции между соляной кислотой и едким натром. В результате их взаимодействия образовывается известный всем раствор пищевой соли в воде. Также в качестве индикаторов могут выступать:

  • метиловый оранжевый;
  • лакмус;
  • метиловый красный;
  • фенолфталеин.

Необходимо отметить, что реакция, обратная нейтрализации, называется гидролизом. Его результатом является образование слабой кислоты или основания.

При выборе нейтрализующего вещества обязательно учитываются:

  • промышленные свойства соединения;
  • доступность;
  • себестоимость.

Раньше в качестве нейтрализатора применяли окись магния. Сейчас она не пользуется популярностью, поскольку имеет высокую стоимость и вступает в реакцию достаточно медленно.

Виды реакции нейтрализации

В процессе взаимодействия сильного основания такой же сильной кислотой происходит смещение реакции в сторону образования воды. Вместе с тем этот процесс не доходит до конца, поскольку начинается гидролиз соли.

При нейтрализации слабой кислоты сильным основанием можно говорить об обратимой реакции. Как правило, в таких системах протекание реакции смещается в сторону образования соли, поскольку вода является более слабым электролитом, чем, например, синильная, уксусная кислота или аммиак.

Скорость процесса нейтрализации изменяется в зависимости от специфики используемых веществ. Например, при применении NaOH необходимая степень кислотности появляется практически сразу же. СаО приводит к возникновению нужной реакции только через 15-20 минут, а MgO – через 45 минут. При этом в последних двух случаях наиболее сильное понижение кислотности наблюдается в первые 5 минут после того как было внесено нейтрализующее вещество. Если скорость процесса не очень высокая, то еще больше его начинает тормозить вторичное окисление.

Выделение тепла в процессе нейтрализации

Часто это происходит под воздействием азотной кислоты. Чем выше ее количество, тем больше выделяется тепла. При получении поваренной соли воздействие тепла приводит к нежелательным последствиям, поскольку она начинает разлагаться с выделением хлора. Из-за выделения тепла можно говорить о том, что все реакции нейтрализации являются экзотермическими. Его выделение происходит из-за возникновения разницы между суммарной энергией ионов Н+ и ОН-, а также энергией образования молекул воды.

Существующее в неорганической химии понятие “реакция нейтрализации” подразумевает химический процесс, в котором взаимодействуют вещества с кислотными и основными свойствами, в результате чего происходит потеря участниками реакции и тех и других характерных химических свойств. Реакция нейтрализации в микробиологии имеет то же глобальное значение, продукты ее теряют свои биологические свойства. Но, разумеется, это совершенно иной процесс с другими участниками и итогами. И биологическое свойство, о котором идет речь и которое прежде всего интересует врачей и ученых, — это способность микроорганизма вызывать заболевание или гибель восприимчивого животного.

Области применения

Чаще всего этот метод исследования используется для идентификации вирусов, то есть диагностики вирусных заразных болезней. Причем тест может быть направлен как на выявление самого возбудителя, так и антител к нему.

В бактериологии эту методику обычно применяют для выявления антител к ферментам бактерий, таких как антистрептолизины, антистафилолизины, антистрептокиназы.

Каким образом проводится этот тест

Реакция нейтрализации основана на способности антител — особых иммунных белков крови — нейтрализовать антигены — чужеродные агенты, попадающие в организм. Если необходимо обнаружение возбудителя и его идентификация, тогда смешивают стандартную иммунную сыворотку, содержащую антитела, с биологическим материалом. Полученная смесь выдерживается в термостате нужное время и вводится в живую восприимчивую систему.

Таковыми являются лабораторные животные (крысы, мыши), куриные эмбрионы, культуры клеток. При отсутствии биологического действия (болезни или смерти животного) можно сделать вывод о том, что это именно тот вирус, стандартную сыворотку к которому использовали. Так как, как уже было сказано, признаком того, что реакция прошла, является потеря вирусом биосвойств (способности вызывать смерть животного) вследствие взаимодействия антител сыворотки и антигенов вируса. При определении токсических веществ алгоритм действий тот же, но есть варианты.

Если исследуют какой-либо субстрат, содержащий токсин, тогда его смешивают со стандартной сывороткой. В случае изучения последней применяют контрольное токсическое вещество. Чтобы пошла реакция нейтрализации, эта смесь также инкубируется заданное время и вводится восприимчивой системе. Техника оценки результата точно такая же.

В медицинской и ветеринарной практике используемая как диагностический тест реакция нейтрализации вирусов проводится в так называемой методике парных сывороток.

Это способ подтверждения диагноза какого-либо вирусного заболевания. Для его проведения у больного человека или животного берут дважды — в начале заболевания и через 14-21 дней после этого.

Если после проведения теста обнаруживается увеличение количества антител к вирусу в 4 и более раза, то диагноз можно считать подтвержденным.